Thermochemistry

# this line makes figures interactive in Jupyter notebooks
%matplotlib inline
from matplotlib import pyplot as plt

import numpy as np
from scipy.optimize import root_scalar
from scipy import constants

from pint import UnitRegistry
ureg = UnitRegistry()
Q_ = ureg.Quantity

# for convenience:
def to_si(quant):
    '''Converts a Pint Quantity to magnitude at base SI units.
    '''
    return quant.to_base_units().magnitude
# these lines are only for helping improve the display
import matplotlib_inline.backend_inline
matplotlib_inline.backend_inline.set_matplotlib_formats('pdf', 'png')
plt.rcParams['figure.dpi']= 300
plt.rcParams['savefig.dpi'] = 300
plt.rcParams['mathtext.fontset'] = 'cm'
# define some constants
Ru = Q_(constants.R, 'J/(K*mol)')
g0 = Q_(constants.g, 'm/s^2')

The thermochemical performance of a rocket is primarily represented using the characteristic velocity:

(6)\[ c^* = \frac{p_c A_t}{\dot{m}} = \sqrt{\frac{\mathcal{R}_u T_c}{\textrm{MW} \, \gamma} \left( \frac{\gamma + 1}{2} \right)^{\frac{\gamma+1}{\gamma-1}} } \;, \]

which depends on the (combustion) chamber temperature \(T_c\), gas molecular weight \(\textrm{MW}\), and gas specific heat ratio \(\gamma\). The thrust coefficient \(C_F\) mainly represents the performance of the nozzle, but it also depends on the specific heat ratio \(\gamma\).

Up to this point, we have been provided or assumed these values, but they are actually a function of

  • propellant(s)

  • ratio of oxidizer to fuel

Given a propellant or combination of propellants and heating (due to combustion, nuclear reactions, or electricity), the gas in the chamber and moving into the nozzle will form a mixture of chemical species at the state of chemical equilibrium. At this state, the forward and reverse rates of all chemical reactions are balanced, and the species remain at a fixed composition (as long as the temperature and/or pressure remain constant).

The amounts of the chemical species at the equilibrium are unknown, but can be determined based on the initial conditions using methods based on reaction equilibrium constants or the minimization of Gibbs free energy. If the temperature is not known/fixed, then it is also an unknown and must be found.

Fortunately, we can use software tools such as NASA’s CEA or Cantera to find the equilibrium state for us. We’ll focus on CEA here.

def get_area_ratio(pressure_ratio, gamma):
    '''Calculates area ratio based on specific heat ratio and pressure ratio.
    pressure ratio: chamber / exit
    area ratio: exit / throat
    '''
    return (
        np.power(2 / (gamma + 1), 1/(gamma-1)) * 
        np.power(pressure_ratio, 1 / gamma) *
        np.sqrt((gamma - 1) / (gamma + 1) /
                (1 - np.power(pressure_ratio, (1 - gamma)/gamma))
                )
        )

def root_area_ratio(pressure_ratio, area_ratio, gamma):
    ''' Returns zero for a given area ratio, pressure ratio, and gamma.
    pressure ratio: chamber / exit
    area ratio: exit / throat
    '''
    return area_ratio - get_area_ratio(pressure_ratio, gamma)

def get_thrust_coeff(pressure_ratio, gamma):
    '''Calculates thrust coefficient for optimum expansion.
    pressure ratio: chamber / exit
    area ratio: exit / throat
    '''
    return np.sqrt(
        2 * np.power(gamma, 2) / (gamma - 1) * 
        np.power(2 / (gamma + 1), (gamma + 1)/(gamma - 1)) * 
        (1 - np.power(1.0 / pressure_ratio, (gamma - 1)/gamma))
        )

def get_cstar(Tc, MW, gamma):
    '''Calculates cstar using chamber properties.'''
    return (
        np.sqrt(Ru * Tc / (gamma * MW)) * 
        (2 / (gamma + 1))**(-0.5*(gamma + 1)/(gamma - 1))
        )

Fixed temperature and pressure

Let’s first consider the problem where the pressure and temperature of the combustion/heating chamber are fixed and known, and determine the equilibrium composition of chemical species. This problem is relevant to an isothermal process, or where temperature is a design variable, such as in nuclear thermal or electrothermal rockets.

For example, say we have an arcjet operating on gaseous hydrazine (N2H4) as a propellant, with a chamber temperature of 5000 K and pressure of 50 psia. The nozzle area ratio is 100, and the arcjet will operate in vacuum. For this system, determine the equilibrium composition, the average molecular weight, ratio of specific heats \(\gamma\), and then use these to get \(c^*\), \(C_F\), and \(I_{\textrm{sp}}\).

In CEA, this is a tp problem, or fixed temperature and pressure problem. We should expect that, at such high temperatures, the equilibrium state will have mostly one- and two-atom molecules, based on the elements present: N2, H2, H, N, and HN.

The CEA plaintext input file looks like:

prob tp
 
p,psia= 50  t,k= 5000

reac
name N2H4 mol 1.0

output siunits
end

and the output is (with the repeated input removed):

*******************************************************************************

         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                   BY  BONNIE MCBRIDE AND SANFORD GORDON
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

 *******************************************************************************

               THERMODYNAMIC EQUILIBRIUM PROPERTIES AT ASSIGNED

                           TEMPERATURE AND PRESSURE

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 NAME        N2H4                         1.0000000         0.000      0.000

 O/F=    0.00000  %FUEL=  0.000000  R,EQ.RATIO= 0.000000  PHI,EQ.RATIO= 0.000000

 THERMODYNAMIC PROPERTIES

 P, BAR            3.4474
 T, K             5000.00
 RHO, KG/CU M    5.5368-2
 H, KJ/KG         42058.0
 U, KJ/KG         35831.8
 G, KJ/KG       -103744.4
 S, KJ/(KG)(K)    29.1605

 M, (1/n)           6.677
 (dLV/dLP)t      -1.04028
 (dLV/dLT)p        1.4750
 Cp, KJ/(KG)(K)   11.1350
 GAMMAs            1.2548
 SON VEL,M/SEC     2795.1

 MOLE FRACTIONS

 *H               0.74177
 *H2              0.04573
 *N               0.00806
 *NH              0.00021
 *N2              0.20422

So, CEA not only provides the equilibrium composition in terms of mole fraction (\(X_i\)), but also the mean molecular weight of the mixture \(MW\); thermodynamic properties and derivatives density \(\rho\), enthalpy \(h\), entropy \(s\), \(\left(\partial \log V / \partial \log P\right)_T\), \(\left(\partial \log V / \partial \log T\right)_P\), specific heat \(C_p = \partial h / \partial T)_P\), the ratio of specific heats (\(\gamma\)), and the sonic velocity (i.e., speed of sound) \(a\). Some of these quantities are not particularly interesting to us right now, but we can use these quantities to find our quantities of interest.

area_ratio = 100
Tc = Q_(5000, 'K')
Pc = Q_(50, 'psi')

# output from CEA
MW = Q_(6.677, 'kg/kmol')
gamma = 1.2548

First, we need to find the exit pressure of the nozzle based on the area ratio:

# initial guesses for Pc / Pe
root = root_scalar(root_area_ratio, x0=1000, x1=2000, args=(area_ratio, gamma))
Pc_Pe = root.root
Pe = Pc / Pc_Pe
print(f"Exit pressure = {Pe.to('psi'): .2e~P}")

cstar = get_cstar(Tc, MW, gamma)
print(f"Cstar = {cstar.to('m/s'): .1f~P}")

CF0 = get_thrust_coeff(Pc_Pe, gamma)
# ambient pressure is zero in vacuum
CF = CF0 + (1/Pc_Pe) * area_ratio
print(f"C_F = {CF: .3f}")
Exit pressure = 2.54e-02 psi
Cstar = 3786.6 m/s
C_F =  1.884
Isp = CF * cstar / g0
print(f"Isp = {Isp.to('s'): .1f~P}")
Isp = 727.4 s

Adiabatic combustion

For chemical rockets, the temperature in the combustion chamber is unknown, and is a function of the propellant combination, oxidizer/fuel ratio, and chamber pressure.

Consider the Space Shuttle Main Engine (SSME, also known as the RS-25), which uses liquid oxygen and liquid hydrogen as propellants, at an O/F ratio of 6.0 and with a chamber pressure of 2870 psia. The engine nozzle has an area ratio of 68.8.

Find the chamber temperature, mole fractions of equilibrium products, specific heat ratio, average molecular weight, \(c^*\), \(C_F\), and specific impulse at sea level.

In CEA, this is an hp type problem (assigned enthalpy and pressure), where the enthalpy of the initial mixture is known based on the propellants and combustion is assumed to be adiabatic.

The CEA plaintext input file (with some comments removed) looks like:

prob hp
 
# Pressure (1 value):
p,psia= 2870
  
# Oxidizer/Fuel Wt. ratio (1 value):
o/f= 6.0
 
reac
fuel H2(L)             wt%=100.0000
oxid O2(L)             wt%=100.0000

output short
output siunits

end

and the output is (with the repeated input removed):

*******************************************************************************

         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                   BY  BONNIE MCBRIDE AND SANFORD GORDON
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

 *******************************************************************************

         THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED

                                   PRESSURES

 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.00000  %FUEL= 14.285714  R,EQ.RATIO= 1.322780  PHI,EQ.RATIO= 1.322780

 THERMODYNAMIC PROPERTIES

 P, BAR            197.88
 T, K             3594.37
 RHO, KG/CU M    9.0105 0
 H, KJ/KG         -986.31
 U, KJ/KG        -3182.40
 G, KJ/KG        -62790.6
 S, KJ/(KG)(K)    17.1948

 M, (1/n)          13.608
 (dLV/dLP)t      -1.01921
 (dLV/dLT)p        1.3335
 Cp, KJ/(KG)(K)    7.3661
 GAMMAs            1.1472
 SON VEL,M/SEC     1587.2

 MOLE FRACTIONS

 *H               0.02575
 HO2              0.00003
 *H2              0.24744
 H2O              0.68555
 H2O2             0.00002
 *O               0.00207
 *OH              0.03694
 *O2              0.00220

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

From the output, we see that the chamber temperature is 3594.37 K, the average molecular weight is 13.608 g/mol, and the specific heat ratio \(\gamma\) is 1.1472. We also see that the equilibrium mixture contains mostly H\(_2\), H\(_2\)O, OH, H, and with some trace amounts of O, O\(_2\), and H\(_2\)O\(_2\). We can use this information to find the quantities of interest:

area_ratio = 68.8
Pc = Q_(2870, 'psi')
# sea level
Pa = Q_(1, 'atm')

# output from CEA
Tc = Q_(3594.37, 'K')
MW = Q_(13.608, 'kg/kmol')
gamma = 1.1472
# initial guesses for Pc / Pe
root = root_scalar(root_area_ratio, x0=500, x1=1000, args=(area_ratio, gamma))
Pc_Pe = root.root
Pe = Pc / Pc_Pe
print(f"Exit pressure = {Pe.to('psi'): .2f~P}")

cstar = get_cstar(Tc, MW, gamma)
print(f"Cstar = {cstar.to('m/s'): .1f~P}")

print('at sea level:')
CF0 = get_thrust_coeff(Pc_Pe, gamma)
CF = CF0 + (1/Pc_Pe + Pa/Pc) * area_ratio
print(f"C_F = {CF.to_base_units(): .3f~P}")

Isp = CF * cstar / g0
print(f"Isp = {Isp.to('s'): .1f~P}")
Exit pressure = 3.81 psi
Cstar = 2322.5 m/s
at sea level:
C_F = 2.350
Isp = 556.5 s

Rocket problem

CEA can also calculate performance quantities specific to rockets, such as the effective velocity (C-star, \(c^*\)), thrust coefficient (\(C_F\)), and specific impulse (\(I_{\text{sp}}\)).

To do this, it has to make an assumption of whether to

For the above example, but choosing the rocket problem and specifying a (supersonic) nozzle area ratio of 68.8, and leaving other options at their defaults, CEA provides this output:

 *******************************************************************************

         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                   BY  BONNIE MCBRIDE AND SANFORD GORDON
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

 *******************************************************************************



  
 ### CEA analysis performed on Tue 08-Feb-2022 11:04:54
  
 # Problem Type: "Rocket" (Infinite Area Combustor)
  
 prob case=_______________8942 ro
  
 # Pressure (1 value):
 p,psia= 2870
 # Supersonic Area Ratio (1 value):
 supar= 68.8
  
 # Oxidizer/Fuel Wt. ratio (1 value):
 o/f= 6.0
  
 # You selected the following fuels and oxidizers:
 reac
 fuel H2(L)             wt%=100.0000
 oxid O2(L)             wt%=100.0000
  
 # You selected these options for output:
 # short version of output
 output short
 # Proportions of any products will be expressed as Mole Fractions.
 # Heat will be expressed as siunits
 output siunits
  
 # Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
 N/prepareInputFile.cgi
  
 ### IMPORTANT:  The following line is the end of your CEA input file!
 end



           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.00000  %FUEL= 14.285714  R,EQ.RATIO= 1.322780  PHI,EQ.RATIO= 1.322780

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7688  1110.26
 P, BAR            197.88   111.87  0.17823
 T, K             3594.37  3276.93   980.79
 RHO, KG/CU M    9.0105 0 5.5875 0 2.9742-2
 H, KJ/KG         -986.31 -2182.76 -9907.46
 U, KJ/KG        -3182.40 -4184.90 -10506.7
 G, KJ/KG        -62790.6 -58528.7 -26771.8
 S, KJ/(KG)(K)    17.1948  17.1948  17.1948

 M, (1/n)          13.608   13.608   13.608
 Cp, KJ/(KG)(K)    3.7951   3.7416   2.7469
 GAMMAs            1.1919   1.1952   1.2861
 SON VEL,M/SEC     1617.9   1546.9    877.9
 MACH NUMBER        0.000    1.000    4.812

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2289.4   2289.4
 CF                         0.6757   1.8450
 Ivac, M/SEC                2841.2   4365.9
 Isp, M/SEC                 1546.9   4224.0

 MOLE FRACTIONS

 *H              0.02575   HO2             0.00003   *H2             0.24744
 H2O             0.68555   H2O2            0.00002   *O              0.00207
 *OH             0.03694   *O2             0.00220

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

The key properties include:

  • C-star of 2289.4 m/s (based on combustion chamber conditions)

  • throat pressure of 111.87 bar and temperature of 3276.93 K

  • exit pressure of 0.17823 bar, temperature of 980.79 K

  • at the nozzle exit, thrust coefficient = 1.8450, Isp = 4224.0 m/s

The reported specific impulse \(I_{\textrm{sp}}\) assumes that the ambient pressure is the same as the exit pressure, since CEA does not know the actual ambient pressure. (It also reports the specific impulse in vacuum, \(I_{\textrm{vac}}\).) The value is given in m/s and needs to be divided by the gravity constant to get our usual units of seconds:

Isp_cea = Q_(4224.0, 'm/s')
Isp = Isp_cea / g0
print(f"Isp = {Isp.to('s'): .1f~P}")
Isp = 430.7 s

The next thing to note is that CEA defaulted to assuming frozen mixture composition from the combustion chamber and throughout the nozzle; in other words, it is assuming that the equilibrium composition in the combustion chamber (based on chemical equilibrium) is the fixed composition throughout the whole nozzle.

However, in reality, the mixture composition will change because the temperature and pressure change throughout the nozzle. In the real system, these changes will be driven by chemical reactions occuring, but it is extremely challening to model these time-dependent effects. Instead, an approximate shifting equilibrium approach can be taken, based on the assumption that the chemical reactions occur infinitely fast, and, therefore, at every location in the nozzle, the mixture composition is the equilibrium composition based on the local temperature and pressure.

CEA can use this approximation by selecting the Equilibrium rocket problem option. This produces:

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.00000  %FUEL= 14.285714  R,EQ.RATIO= 1.322780  PHI,EQ.RATIO= 1.322780

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7401   960.27
 P, BAR            197.88   113.71  0.20607
 T, K             3594.37  3378.30  1234.47
 RHO, KG/CU M    9.0105 0 5.5605 0 2.8330-2
 H, KJ/KG         -986.31 -2160.57 -10543.0
 U, KJ/KG        -3182.40 -4205.62 -11270.4
 G, KJ/KG        -62790.6 -60249.7 -31769.4
 S, KJ/(KG)(K)    17.1948  17.1948  17.1948

 M, (1/n)          13.608   13.735   14.111
 (dLV/dLP)t      -1.01921 -1.01432 -1.00000
 (dLV/dLT)p        1.3335   1.2644   1.0000
 Cp, KJ/(KG)(K)    7.3661   6.7421   2.9102
 GAMMAs            1.1472   1.1484   1.2539
 SON VEL,M/SEC     1587.2   1532.5    955.0
 MACH NUMBER        0.000    1.000    4.578

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2322.1   2322.1
 CF                         0.6599   1.8827
 Ivac, M/SEC                2867.0   4538.3
 Isp, M/SEC                 1532.5   4371.9


 MOLE FRACTIONS

 *H               0.02575  0.02063  0.00000
 HO2              0.00003  0.00002  0.00000
 *H2              0.24744  0.24496  0.24402
 H2O              0.68555  0.70439  0.75598
 H2O2             0.00002  0.00001  0.00000
 *O               0.00207  0.00126  0.00000
 *OH              0.03694  0.02734  0.00000
 *O2              0.00220  0.00140  0.00000

With the key properties:

  • C-star of 2322.1 m/s (based on combustion chamber conditions)

  • exit pressure of 0.20607

  • at the nozzle exit, thrust coefficient = 1.8827, Isp = 4371.9 m/s

Isp_cea = Q_(4371.9, 'm/s')
Isp_eq = Isp_cea / g0
print(f"Isp (equilibrium) = {Isp_eq.to('s'): .1f~P}")

print(f"Difference: {100*np.abs(Isp_eq - Isp)/Isp: .2f~P}%")
Isp (equilibrium) = 445.8 s
Difference: 3.50%

The shifting equilibrium assumption typically overpredicts the real performance by 1–4%, while the frozen composition assumption underpredicts performance by 1–4%.

Oxidizer-to-fuel ratio

The thermochemical performance of a rocket, represented by \(c^*\), is a strong function of the oxidizer-to-fuel ratio, or \(r = \) O/F, and thus the overall performance (\(I_{\textrm{sp}}\)) also depends on the O/F ratio. For liquid rockets, this ratio can be controlled directly since the propellants are injected separately. CEA can help us identify the optimal O/F ratio.

For example, for the SSME considered above using liquid hydrogen and liquid oxygen, we can have CEA sweep over a range of O/F values, from 2 to 8 in increments of 0.25. This gives an input file of

 prob case=_______________8942 ro equilibrium
  
 # Pressure (1 value):
 p,psia= 2870
 # Supersonic Area Ratio (1 value):
 supar= 68.8
  
 # Oxidizer/Fuel Wt. ratio (25 values):
 o/f= 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5
 .75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8
  
 reac
 fuel H2(L)             wt%=100.0000
 oxid O2(L)             wt%=100.0000
  
 output short
 # Proportions of any products will be expressed as Mole Fractions.
 # Heat will be expressed as siunits
 output siunits
  
 end

The output of CEA will be quite long, since there are 25 separate cases; the output is in the file cea_OF_ratio_out.txt. We can use Python to extract the desired information:

# Click the + to see the full contents of the output file
filename = 'cea_OF_ratio_out.txt'
print('Contents of ' + filename + ':')
with open(filename) as f:
    file_contents = f.read()
    print(file_contents)
Contents of cea_OF_ratio_out.txt:

         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                   BY  BONNIE MCBRIDE AND SANFORD GORDON
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

 *******************************************************************************

  
 ### CEA analysis performed on Tue 08-Feb-2022 16:53:23
  
 # Problem Type: "Rocket" (Infinite Area Combustor)
  
 prob case=_______________8942 ro equilibrium
  
 # Pressure (1 value):
 p,psia= 2870
 # Supersonic Area Ratio (1 value):
 supar= 68.8
  
 # Oxidizer/Fuel Wt. ratio (25 values):
 o/f= 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5
 .75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8
  
 # You selected the following fuels and oxidizers:
 reac
 fuel H2(L)             wt%=100.0000
 oxid O2(L)             wt%=100.0000
  
 # You selected these options for output:
 # short version of output
 output short
 # Proportions of any products will be expressed as Mole Fractions.
 # Heat will be expressed as siunits
 output siunits
  
 # Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
 N/prepareInputFile.cgi
  
 ### IMPORTANT:  The following line is the end of your CEA input file!
 end

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.00000  %FUEL= 33.333333  R,EQ.RATIO= 3.968341  PHI,EQ.RATIO= 3.968341

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8302  1683.07
 P, BAR            197.88   108.12  0.11757
 T, K             1797.77  1570.17   295.90
 RHO, KG/CU M    8.0059 0 5.0085 0 2.9545-2
 H, KJ/KG        -1760.57 -3158.32 -10246.6
 U, KJ/KG        -4232.25 -5317.05 -10644.6
 G, KJ/KG        -50618.5 -45830.8 -18288.2
 S, KJ/(KG)(K)    27.1769  27.1769  27.1769

 M, (1/n)           6.048    6.048    6.182
 MW, MOL WT         6.048    6.048    6.048
 (dLV/dLP)t      -1.00001 -1.00000 -1.30774
 (dLV/dLT)p        1.0002   1.0000   6.5161
 Cp, KJ/(KG)(K)    6.2443   6.0361 138.0837
 GAMMAs            1.2825   1.2950   1.1183
 SON VEL,M/SEC     1780.4   1672.0    667.1
 MACH NUMBER        0.000    1.000    6.176

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2363.0   2363.0
 CF                         0.7076   1.7434
 Ivac, M/SEC                2963.1   4216.3
 Isp, M/SEC                 1672.0   4119.7

 MOLE FRACTIONS

 *H               0.00002  0.00000  0.00000
 *H2              0.74799  0.74800  0.74801
 H2O              0.25199  0.25199  0.23019
 H2O(L)           0.00000  0.00000  0.02180

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.25000  %FUEL= 30.769231  R,EQ.RATIO= 3.527415  PHI,EQ.RATIO= 3.527415

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8214  1819.59
 P, BAR            197.88   108.64  0.10875
 T, K             1975.45  1736.00   298.69
 RHO, KG/CU M    7.8927 0 4.9312 0 2.8689-2
 H, KJ/KG        -1656.35 -3067.04 -10461.5
 U, KJ/KG        -4163.45 -5270.18 -10840.6
 G, KJ/KG        -53103.6 -48278.2 -18240.5
 S, KJ/(KG)(K)    26.0433  26.0433  26.0433

 M, (1/n)           6.551    6.552    6.552
 MW, MOL WT         6.551    6.552    6.552
 (dLV/dLP)t      -1.00002 -1.00000 -1.00000
 (dLV/dLT)p        1.0006   1.0001   1.0000
 Cp, KJ/(KG)(K)    5.9922   5.7929   4.6075
 GAMMAs            1.2691   1.2806   1.3801
 SON VEL,M/SEC     1783.7   1679.7    723.3
 MACH NUMBER        0.000    1.000    5.802

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2389.0   2389.0
 CF                         0.7031   1.7566
 Ivac, M/SEC                2991.3   4286.8
 Isp, M/SEC                 1679.7   4196.5

 MOLE FRACTIONS

 *H               0.00008  0.00002  0.00000
 *H2              0.71644  0.71649  0.71651
 H2O              0.28348  0.28349  0.28349

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.50000  %FUEL= 28.571429  R,EQ.RATIO= 3.174673  PHI,EQ.RATIO= 3.174673

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8137  1739.44
 P, BAR            197.88   109.11  0.11376
 T, K             2144.07  1894.66   343.37
 RHO, KG/CU M    7.8307 0 4.8865 0 2.8114-2
 H, KJ/KG        -1567.01 -2982.53 -10601.0
 U, KJ/KG        -4093.97 -5215.33 -11005.6
 G, KJ/KG        -55217.9 -50392.5 -19193.1
 S, KJ/(KG)(K)    25.0229  25.0229  25.0229

 M, (1/n)           7.055    7.055    7.056
 MW, MOL WT         7.055    7.055    7.056
 (dLV/dLP)t      -1.00006 -1.00002 -1.00000
 (dLV/dLT)p        1.0017   1.0005   1.0000
 Cp, KJ/(KG)(K)    5.7811   5.5815   4.3324
 GAMMAs            1.2570   1.2679   1.3736
 SON VEL,M/SEC     1782.3   1682.6    745.5
 MACH NUMBER        0.000    1.000    5.701

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2406.8   2406.8
 CF                         0.6991   1.7661
 Ivac, M/SEC                3009.6   4345.8
 Isp, M/SEC                 1682.6   4250.6

 MOLE FRACTIONS

 *H               0.00024  0.00006  0.00000
 *H2              0.68481  0.68496  0.68501
 H2O              0.31494  0.31498  0.31499
 *OH              0.00002  0.00000  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.75000  %FUEL= 26.666667  R,EQ.RATIO= 2.886066  PHI,EQ.RATIO= 2.886066

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8066  1662.01
 P, BAR            197.88   109.53  0.11906
 T, K             2304.06  2046.61   390.80
 RHO, KG/CU M    7.8060 0 4.8654 0 2.7699-2
 H, KJ/KG        -1489.58 -2903.81 -10707.7
 U, KJ/KG        -4024.54 -5155.02 -11137.5
 G, KJ/KG        -57021.2 -52230.3 -20126.6
 S, KJ/(KG)(K)    24.1016  24.1016  24.1016

 M, (1/n)           7.557    7.559    7.560
 MW, MOL WT         7.557    7.559    7.560
 (dLV/dLP)t      -1.00016 -1.00005 -1.00000
 (dLV/dLT)p        1.0038   1.0012   1.0000
 Cp, KJ/(KG)(K)    5.6137   5.4018   4.0893
 GAMMAs            1.2458   1.2564   1.3679
 SON VEL,M/SEC     1777.1   1681.8    766.8
 MACH NUMBER        0.000    1.000    5.600

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2418.3   2418.3
 CF                         0.6955   1.7755
 Ivac, M/SEC                3020.4   4393.8
 Isp, M/SEC                 1681.8   4293.7

 MOLE FRACTIONS

 *H               0.00057  0.00017  0.00000
 *H2              0.65305  0.65337  0.65351
 H2O              0.34633  0.34645  0.34649
 *OH              0.00005  0.00001  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.00000  %FUEL= 25.000000  R,EQ.RATIO= 2.645561  PHI,EQ.RATIO= 2.645561

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8001  1587.44
 P, BAR            197.88   109.93  0.12465
 T, K             2455.55  2192.08   441.13
 RHO, KG/CU M    7.8101 0 4.8623 0 2.7404-2
 H, KJ/KG        -1421.83 -2829.97 -10786.8
 U, KJ/KG        -3955.47 -5090.78 -11241.7
 G, KJ/KG        -58554.6 -53832.6 -21050.6
 S, KJ/(KG)(K)    23.2668  23.2668  23.2668

 M, (1/n)           8.058    8.062    8.064
 MW, MOL WT         8.058    8.062    8.064
 (dLV/dLP)t      -1.00033 -1.00011 -1.00000
 (dLV/dLT)p        1.0075   1.0028   1.0000
 Cp, KJ/(KG)(K)    5.4926   5.2559   3.8780
 GAMMAs            1.2351   1.2457   1.3622
 SON VEL,M/SEC     1769.0   1678.2    787.2
 MACH NUMBER        0.000    1.000    5.498

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2425.1   2425.1
 CF                         0.6920   1.7846
 Ivac, M/SEC                3025.4   4432.9
 Isp, M/SEC                 1678.2   4327.8

 MOLE FRACTIONS

 *H               0.00116  0.00041  0.00000
 *H2              0.62110  0.62169  0.62201
 H2O              0.37759  0.37787  0.37799
 *OH              0.00015  0.00004  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.25000  %FUEL= 23.529412  R,EQ.RATIO= 2.442056  PHI,EQ.RATIO= 2.442056

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7939  1516.04
 P, BAR            197.88   110.31  0.13052
 T, K             2598.47  2331.15   494.40
 RHO, KG/CU M    7.8373 0 4.8737 0 2.7203-2
 H, KJ/KG        -1362.05 -2760.18 -10842.6
 U, KJ/KG        -3886.90 -5023.56 -11322.4
 G, KJ/KG        -59847.0 -55228.4 -21970.3
 S, KJ/(KG)(K)    22.5075  22.5075  22.5075

 M, (1/n)           8.557    8.563    8.567
 MW, MOL WT         8.557    8.563    8.567
 (dLV/dLP)t      -1.00061 -1.00023 -1.00000
 (dLV/dLT)p        1.0135   1.0057   1.0000
 Cp, KJ/(KG)(K)    5.4192   5.1467   3.6969
 GAMMAs            1.2248   1.2354   1.3559
 SON VEL,M/SEC     1758.5   1672.2    806.6
 MACH NUMBER        0.000    1.000    5.399

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2428.0   2428.0
 CF                         0.6887   1.7934
 Ivac, M/SEC                3025.7   4464.6
 Isp, M/SEC                 1672.2   4354.4

 MOLE FRACTIONS

 *H               0.00208  0.00083  0.00000
 *H2              0.58893  0.58987  0.59051
 H2O              0.40862  0.40919  0.40949
 *OH              0.00037  0.00011  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.50000  %FUEL= 22.222222  R,EQ.RATIO= 2.267624  PHI,EQ.RATIO= 2.267624

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7878  1448.16
 P, BAR            197.88   110.68  0.13664
 T, K             2732.68  2463.70   550.57
 RHO, KG/CU M    7.8839 0 4.8972 0 2.7078-2
 H, KJ/KG        -1308.92 -2693.79 -10878.3
 U, KJ/KG        -3818.84 -4953.94 -11382.9
 G, KJ/KG        -60920.0 -56437.3 -22888.4
 S, KJ/(KG)(K)    21.8141  21.8141  21.8141

 M, (1/n)           9.052    9.063    9.071
 MW, MOL WT         9.052    9.063    9.071
 (dLV/dLP)t      -1.00105 -1.00045 -1.00000
 (dLV/dLT)p        1.0222   1.0103   1.0000
 Cp, KJ/(KG)(K)    5.3937   5.0772   3.5431
 GAMMAs            1.2149   1.2255   1.3490
 SON VEL,M/SEC     1746.2   1664.3    825.1
 MACH NUMBER        0.000    1.000    5.302

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2427.9   2427.9
 CF                         0.6855   1.8019
 Ivac, M/SEC                3022.3   4490.1
 Isp, M/SEC                 1664.3   4374.8

 MOLE FRACTIONS

 *H               0.00341  0.00152  0.00000
 *H2              0.55653  0.55788  0.55901
 H2O              0.43928  0.44033  0.44099
 *OH              0.00078  0.00026  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.75000  %FUEL= 21.052632  R,EQ.RATIO= 2.116449  PHI,EQ.RATIO= 2.116449

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7819  1383.89
 P, BAR            197.88   111.05  0.14299
 T, K             2858.04  2589.51   609.53
 RHO, KG/CU M    7.9470 0 4.9312 0 2.7016-2
 H, KJ/KG        -1261.38 -2630.32 -10896.6
 U, KJ/KG        -3751.35 -4882.34 -11425.9
 G, KJ/KG        -61790.9 -57472.7 -23805.6
 S, KJ/(KG)(K)    21.1787  21.1787  21.1787

 M, (1/n)           9.544    9.561    9.575
 MW, MOL WT         9.544    9.561    9.575
 (dLV/dLP)t      -1.00167 -1.00078 -1.00000
 (dLV/dLT)p        1.0340   1.0173   1.0000
 Cp, KJ/(KG)(K)    5.4147   5.0494   3.4134
 GAMMAs            1.2054   1.2158   1.3412
 SON VEL,M/SEC     1732.4   1654.7    842.5
 MACH NUMBER        0.000    1.000    5.210

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2425.1   2425.1
 CF                         0.6823   1.8101
 Ivac, M/SEC                3015.7   4510.4
 Isp, M/SEC                 1654.7   4389.8

 MOLE FRACTIONS

 *H               0.00515  0.00253  0.00000
 *H2              0.52394  0.52571  0.52751
 H2O              0.46942  0.47118  0.47249
 *O               0.00001  0.00000  0.00000
 *OH              0.00149  0.00057  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.00000  %FUEL= 20.000000  R,EQ.RATIO= 1.984171  PHI,EQ.RATIO= 1.984171

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7761  1323.39
 P, BAR            197.88   111.41  0.14952
 T, K             2974.45  2708.26   671.13
 RHO, KG/CU M    8.0246 0 4.9745 0 2.7009-2
 H, KJ/KG        -1218.59 -2569.45 -10899.7
 U, KJ/KG        -3684.49 -4809.15 -11453.3
 G, KJ/KG        -62475.3 -58344.2 -24721.1
 S, KJ/(KG)(K)    20.5943  20.5943  20.5943

 M, (1/n)          10.029   10.054   10.079
 MW, MOL WT        10.029   10.054   10.079
 (dLV/dLP)t      -1.00250 -1.00126 -1.00000
 (dLV/dLT)p        1.0495   1.0272   1.0000
 Cp, KJ/(KG)(K)    5.4801   5.0645   3.3046
 GAMMAs            1.1964   1.2063   1.3327
 SON VEL,M/SEC     1717.6   1643.7    858.9
 MACH NUMBER        0.000    1.000    5.123

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2420.1   2420.1
 CF                         0.6792   1.8182
 Ivac, M/SEC                3006.3   4526.1
 Isp, M/SEC                 1643.7   4400.2

 MOLE FRACTIONS

 *H               0.00728  0.00391  0.00000
 *H2              0.49125  0.49338  0.49601
 H2O              0.49883  0.50159  0.50399
 *O               0.00002  0.00001  0.00000
 *OH              0.00261  0.00112  0.00000
 *O2              0.00001  0.00000  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.25000  %FUEL= 19.047619  R,EQ.RATIO= 1.867455  PHI,EQ.RATIO= 1.867455

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7705  1266.63
 P, BAR            197.88   111.77  0.15623
 T, K             3081.92  2819.66   735.18
 RHO, KG/CU M    8.1149 0 5.0260 0 2.7049-2
 H, KJ/KG        -1179.87 -2510.98 -10889.4
 U, KJ/KG        -3618.34 -4734.72 -11466.9
 G, KJ/KG        -62988.0 -59059.4 -25633.4
 S, KJ/(KG)(K)    20.0550  20.0550  20.0550

 M, (1/n)          10.509   10.543   10.583
 MW, MOL WT        10.509   10.543   10.583
 (dLV/dLP)t      -1.00357 -1.00194 -1.00000
 (dLV/dLT)p        1.0689   1.0404   1.0000
 Cp, KJ/(KG)(K)    5.5875   5.1228   3.2139
 GAMMAs            1.1879   1.1972   1.3235
 SON VEL,M/SEC     1702.0   1631.6    874.3
 MACH NUMBER        0.000    1.000    5.040

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2413.0   2413.0
 CF                         0.6762   1.8262
 Ivac, M/SEC                2994.5   4537.8
 Isp, M/SEC                 1631.6   4406.7

 MOLE FRACTIONS

 *H               0.00973  0.00564  0.00000
 *H2              0.45860  0.46094  0.46451
 H2O              0.52733  0.53137  0.53549
 *O               0.00005  0.00001  0.00000
 *OH              0.00427  0.00202  0.00000
 *O2              0.00002  0.00001  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.50000  %FUEL= 18.181818  R,EQ.RATIO= 1.763707  PHI,EQ.RATIO= 1.763707

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7651  1213.50
 P, BAR            197.88   112.11  0.16306
 T, K             3180.53  2923.45   801.47
 RHO, KG/CU M    8.2164 0 5.0850 0 2.7131-2
 H, KJ/KG        -1144.68 -2454.73 -10867.1
 U, KJ/KG        -3553.02 -4659.40 -11468.2
 G, KJ/KG        -63342.7 -59625.4 -26540.6
 S, KJ/(KG)(K)    19.5559  19.5559  19.5559

 M, (1/n)          10.980   11.025   11.087
 MW, MOL WT        10.980   11.025   11.087
 (dLV/dLP)t      -1.00490 -1.00283 -1.00000
 (dLV/dLT)p        1.0924   1.0574   1.0000
 Cp, KJ/(KG)(K)    5.7347   5.2241   3.1387
 GAMMAs            1.1802   1.1885   1.3139
 SON VEL,M/SEC     1685.9   1618.7    888.7
 MACH NUMBER        0.000    1.000    4.962

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2404.1   2404.1
 CF                         0.6733   1.8342
 Ivac, M/SEC                2980.7   4545.9
 Isp, M/SEC                 1618.7   4409.6

 MOLE FRACTIONS

 *H               0.01239  0.00768  0.00000
 *H2              0.42615  0.42852  0.43301
 H2O              0.55472  0.56033  0.56699
 *O               0.00011  0.00003  0.00000
 *OH              0.00658  0.00341  0.00000
 *O2              0.00005  0.00002  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.75000  %FUEL= 17.391304  R,EQ.RATIO= 1.670881  PHI,EQ.RATIO= 1.670881

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7600  1163.87
 P, BAR            197.88   112.43  0.17002
 T, K             3270.40  3019.42   869.78
 RHO, KG/CU M    8.3280 0 5.1506 0 2.7251-2
 H, KJ/KG        -1112.55 -2400.72 -10834.3
 U, KJ/KG        -3488.62 -4583.60 -11458.2
 G, KJ/KG        -63552.4 -60048.7 -27440.6
 S, KJ/(KG)(K)    19.0924  19.0924  19.0924

 M, (1/n)          11.444   11.501   11.591
 MW, MOL WT        11.444   11.501   11.591
 (dLV/dLP)t      -1.00651 -1.00396 -1.00000
 (dLV/dLT)p        1.1204   1.0787   1.0000
 Cp, KJ/(KG)(K)    5.9203   5.3682   3.0772
 GAMMAs            1.1731   1.1803   1.3040
 SON VEL,M/SEC     1669.5   1605.1    902.0
 MACH NUMBER        0.000    1.000    4.889

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2393.5   2393.5
 CF                         0.6706   1.8422
 Ivac, M/SEC                2965.1   4551.0
 Isp, M/SEC                 1605.1   4409.5

 MOLE FRACTIONS

 *H               0.01513  0.00996  0.00000
 *H2              0.39411  0.39627  0.40151
 H2O              0.58080  0.58825  0.59849
 *O               0.00020  0.00008  0.00000
 *OH              0.00964  0.00540  0.00000
 *O2              0.00012  0.00004  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.00000  %FUEL= 16.666667  R,EQ.RATIO= 1.587337  PHI,EQ.RATIO= 1.587337

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7553  1117.54
 P, BAR            197.88   112.73  0.17707
 T, K             3351.71  3107.44   939.87
 RHO, KG/CU M    8.4487 0 5.2221 0 2.7406-2
 H, KJ/KG        -1083.09 -2348.82 -10792.0
 U, KJ/KG        -3425.22 -4507.58 -11438.1
 G, KJ/KG        -63628.9 -60336.3 -28330.9
 S, KJ/(KG)(K)    18.6609  18.6609  18.6609

 M, (1/n)          11.899   11.968   12.095
 MW, MOL WT        11.899   11.968   12.095
 (dLV/dLP)t      -1.00841 -1.00537 -1.00000
 (dLV/dLT)p        1.1532   1.1047   1.0000
 Cp, KJ/(KG)(K)    6.1433   5.5554   3.0276
 GAMMAs            1.1667   1.1727   1.2937
 SON VEL,M/SEC     1653.0   1591.1    914.3
 MACH NUMBER        0.000    1.000    4.820

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2381.6   2381.6
 CF                         0.6681   1.8503
 Ivac, M/SEC                2947.9   4553.2
 Isp, M/SEC                 1591.1   4406.6

 MOLE FRACTIONS

 *H               0.01783  0.01237  0.00000
 *H2              0.36268  0.36436  0.37001
 H2O              0.60538  0.61490  0.62999
 *O               0.00036  0.00015  0.00000
 *OH              0.01351  0.00811  0.00000
 *O2              0.00023  0.00010  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.25000  %FUEL= 16.000000  R,EQ.RATIO= 1.511749  PHI,EQ.RATIO= 1.511749

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7509  1074.30
 P, BAR            197.88   113.01  0.18419
 T, K             3424.61  3187.41  1011.52
 RHO, KG/CU M    8.5778 0 5.2992 0 2.7593-2
 H, KJ/KG        -1055.99 -2298.95 -10741.1
 U, KJ/KG        -3362.87 -4431.60 -11408.7
 G, KJ/KG        -63582.5 -60494.7 -29209.6
 S, KJ/(KG)(K)    18.2580  18.2580  18.2580

 M, (1/n)          12.343   12.427   12.599
 MW, MOL WT        12.343   12.427   12.599
 (dLV/dLP)t      -1.01063 -1.00709 -1.00000
 (dLV/dLT)p        1.1909   1.1359   1.0000
 Cp, KJ/(KG)(K)    6.4028   5.7865   2.9882
 GAMMAs            1.1609   1.1657   1.2834
 SON VEL,M/SEC     1636.5   1576.7    925.6
 MACH NUMBER        0.000    1.000    4.755

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2368.3   2368.3
 CF                         0.6657   1.8583
 Ivac, M/SEC                2929.3   4552.8
 Isp, M/SEC                 1576.7   4401.2

 MOLE FRACTIONS

 *H               0.02035  0.01476  0.00000
 HO2              0.00001  0.00000  0.00000
 *H2              0.33208  0.33303  0.33851
 H2O              0.62830  0.64006  0.66149
 H2O2             0.00001  0.00000  0.00000
 *O               0.00061  0.00029  0.00000
 *OH              0.01822  0.01163  0.00000
 *O2              0.00044  0.00021  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.50000  %FUEL= 15.384615  R,EQ.RATIO= 1.443033  PHI,EQ.RATIO= 1.443033

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7469  1033.87
 P, BAR            197.88   113.27  0.19140
 T, K             3489.25  3259.25  1084.58
 RHO, KG/CU M    8.7147 0 5.3815 0 2.7811-2
 H, KJ/KG        -1030.98 -2251.00 -10682.3
 U, KJ/KG        -3301.62 -4355.85 -11370.5
 G, KJ/KG        -63422.3 -60529.7 -30075.6
 S, KJ/(KG)(K)    17.8810  17.8810  17.8810

 M, (1/n)          12.777   12.875   13.103
 MW, MOL WT        12.777   12.875   13.103
 (dLV/dLP)t      -1.01318 -1.00914 -1.00000
 (dLV/dLT)p        1.2337   1.1728   1.0000
 Cp, KJ/(KG)(K)    6.6967   6.0622   2.9559
 GAMMAs            1.1557   1.1593   1.2733
 SON VEL,M/SEC     1619.9   1562.1    936.1
 MACH NUMBER        0.000    1.000    4.693

 PERFORMANCE PARAMETERS

 Ae/At                     1.00000   68.800
 CSTAR, M/SEC               2354.0   2354.0
 CF                         0.6636   1.8664
 Ivac, M/SEC                2909.5   4550.1
 Isp, M/SEC                 1562.1   4393.5

 MOLE FRACTIONS

 *H               0.02257  0.01702  0.00000
 HO2              0.00001  0.00001  0.00000
 *H2              0.30253  0.30252  0.30702
 H2O              0.64939  0.66350  0.69298
 H2O2             0.00001  0.00000  0.00000
 *O               0.00096  0.00050  0.00000
 *OH              0.02374  0.01603  0.00000
 *O2              0.00079  0.00042  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.75000  %FUEL= 14.814815  R,EQ.RATIO= 1.380293  PHI,EQ.RATIO= 1.380293

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7433   995.99
 P, BAR            197.88   113.51  0.19867
 T, K             3545.79  3322.91  1158.90
 RHO, KG/CU M    8.8590 0 5.4686 0 2.8056-2
 H, KJ/KG        -1007.82 -2204.91 -10616.2
 U, KJ/KG        -3241.46 -4280.49 -11324.4
 G, KJ/KG        -63155.9 -60446.5 -30928.6
 S, KJ/(KG)(K)    17.5273  17.5273  17.5273

 M, (1/n)          13.199   13.311   13.607
 MW, MOL WT        13.199   13.311   13.607
 (dLV/dLP)t      -1.01605 -1.01155 -1.00000
 (dLV/dLT)p        1.2815   1.2156   1.0000
 Cp, KJ/(KG)(K)    7.0207   6.3821   2.9306
 GAMMAs            1.1511   1.1535   1.2634
 SON VEL,M/SEC     1603.5   1547.3    945.9
 MACH NUMBER        0.000    1.000    4.635

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2338.5   2338.5
 CF                         0.6617   1.8746
 Ivac, M/SEC                2888.7   4545.2
 Isp, M/SEC                 1547.3   4383.7

 MOLE FRACTIONS

 *H               0.02439  0.01901  0.00000
 HO2              0.00002  0.00001  0.00000
 *H2              0.27425  0.27307  0.27552
 H2O              0.66851  0.68501  0.72448
 H2O2             0.00001  0.00001  0.00000
 *O               0.00144  0.00081  0.00000
 *OH              0.03002  0.02128  0.00000
 *O2              0.00135  0.00079  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.00000  %FUEL= 14.285714  R,EQ.RATIO= 1.322780  PHI,EQ.RATIO= 1.322780

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7401   960.27
 P, BAR            197.88   113.71  0.20607
 T, K             3594.37  3378.30  1234.47
 RHO, KG/CU M    9.0105 0 5.5605 0 2.8330-2
 H, KJ/KG         -986.31 -2160.57 -10543.0
 U, KJ/KG        -3182.40 -4205.62 -11270.4
 G, KJ/KG        -62790.6 -60249.7 -31769.4
 S, KJ/(KG)(K)    17.1948  17.1948  17.1948

 M, (1/n)          13.608   13.735   14.111
 MW, MOL WT        13.608   13.735   14.111
 (dLV/dLP)t      -1.01921 -1.01432 -1.00000
 (dLV/dLT)p        1.3335   1.2644   1.0000
 Cp, KJ/(KG)(K)    7.3661   6.7421   2.9102
 GAMMAs            1.1472   1.1484   1.2539
 SON VEL,M/SEC     1587.2   1532.5    955.0
 MACH NUMBER        0.000    1.000    4.578

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2322.1   2322.1
 CF                         0.6599   1.8827
 Ivac, M/SEC                2867.0   4538.3
 Isp, M/SEC                 1532.5   4371.9

 MOLE FRACTIONS

 *H               0.02575  0.02063  0.00000
 HO2              0.00003  0.00002  0.00000
 *H2              0.24744  0.24496  0.24402
 H2O              0.68555  0.70439  0.75598
 H2O2             0.00002  0.00001  0.00000
 *O               0.00207  0.00126  0.00000
 *OH              0.03694  0.02734  0.00000
 *O2              0.00220  0.00140  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.25000  %FUEL= 13.793103  R,EQ.RATIO= 1.269869  PHI,EQ.RATIO= 1.269869

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7373   926.38
 P, BAR            197.88   113.90  0.21360
 T, K             3635.16  3425.40  1311.32
 RHO, KG/CU M    9.1688 0 5.6569 0 2.8633-2
 H, KJ/KG         -966.28 -2117.95 -10462.8
 U, KJ/KG        -3124.47 -4131.38 -11208.8
 G, KJ/KG        -62333.1 -59943.7 -32599.7
 S, KJ/(KG)(K)    16.8815  16.8815  16.8815

 M, (1/n)          14.005   14.145   14.615
 MW, MOL WT        14.005   14.145   14.615
 (dLV/dLP)t      -1.02257 -1.01743 -1.00000
 (dLV/dLT)p        1.3885   1.3185   1.0000
 Cp, KJ/(KG)(K)    7.7176   7.1313   2.8934
 GAMMAs            1.1438   1.1440   1.2447
 SON VEL,M/SEC     1571.2   1517.7    963.6
 MACH NUMBER        0.000    1.000    4.523

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2304.9   2304.9
 CF                         0.6585   1.8908
 Ivac, M/SEC                2844.3   4529.3
 Isp, M/SEC                 1517.7   4358.1

 MOLE FRACTIONS

 *H               0.02662  0.02179  0.00000
 HO2              0.00005  0.00003  0.00000
 *H2              0.22229  0.21844  0.21252
 H2O              0.70042  0.72145  0.78748
 H2O2             0.00002  0.00001  0.00000
 *O               0.00285  0.00185  0.00000
 *OH              0.04431  0.03407  0.00000
 *O2              0.00343  0.00236  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.50000  %FUEL= 13.333333  R,EQ.RATIO= 1.221028  PHI,EQ.RATIO= 1.221028

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7350   894.01
 P, BAR            197.88   114.05  0.22134
 T, K             3668.40  3464.22  1389.59
 RHO, KG/CU M    9.3336 0 5.7575 0 2.8964-2
 H, KJ/KG         -947.59 -2076.97 -10375.4
 U, KJ/KG        -3067.67 -4057.88 -11139.6
 G, KJ/KG        -61791.0 -59533.8 -33422.8
 S, KJ/(KG)(K)    16.5858  16.5858  16.5858

 M, (1/n)          14.387   14.540   15.119
 MW, MOL WT        14.387   14.540   15.119
 (dLV/dLP)t      -1.02598 -1.02076 -1.00000
 (dLV/dLT)p        1.4438   1.3758   1.0000
 Cp, KJ/(KG)(K)    8.0531   7.5284   2.8795
 GAMMAs            1.1410   1.1403   1.2361
 SON VEL,M/SEC     1555.3   1502.9    971.9
 MACH NUMBER        0.000    1.000    4.468

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2286.8   2286.8
 CF                         0.6572   1.8988
 Ivac, M/SEC                2821.0   4518.3
 Isp, M/SEC                 1502.9   4342.3

 MOLE FRACTIONS

 *H               0.02699  0.02246  0.00000
 HO2              0.00007  0.00004  0.00000
 *H2              0.19896  0.19376  0.18102
 H2O              0.71307  0.73607  0.81898
 H2O2             0.00003  0.00002  0.00000
 *O               0.00378  0.00260  0.00000
 *OH              0.05193  0.04126  0.00000
 *O2              0.00516  0.00380  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.75000  %FUEL= 12.903226  R,EQ.RATIO= 1.175805  PHI,EQ.RATIO= 1.175805

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7331   862.80
 P, BAR            197.88   114.18  0.22935
 T, K             3694.44  3494.93  1469.55
 RHO, KG/CU M    9.5045 0 5.8621 0 2.9325-2
 H, KJ/KG         -930.11 -2037.62 -10280.3
 U, KJ/KG        -3012.05 -3985.29 -11062.4
 G, KJ/KG        -61172.3 -59026.7 -34243.1
 S, KJ/(KG)(K)    16.3062  16.3062  16.3062

 M, (1/n)          14.754   14.920   15.623
 MW, MOL WT        14.754   14.920   15.623
 (dLV/dLP)t      -1.02924 -1.02410 -1.00000
 (dLV/dLT)p        1.4961   1.4328   1.0001
 Cp, KJ/(KG)(K)    8.3450   7.9006   2.8684
 GAMMAs            1.1388   1.1373   1.2279
 SON VEL,M/SEC     1539.8   1488.3    980.0
 MACH NUMBER        0.000    1.000    4.413

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2268.1   2268.1
 CF                         0.6562   1.9066
 Ivac, M/SEC                2797.0   4505.2
 Isp, M/SEC                 1488.3   4324.4

 MOLE FRACTIONS

 *H               0.02690  0.02263  0.00001
 HO2              0.00010  0.00006  0.00000
 *H2              0.17756  0.17112  0.14951
 H2O              0.72351  0.74817  0.85047
 H2O2             0.00004  0.00002  0.00000
 *O               0.00483  0.00349  0.00000
 *OH              0.05957  0.04865  0.00000
 *O2              0.00750  0.00586  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.00000  %FUEL= 12.500000  R,EQ.RATIO= 1.133812  PHI,EQ.RATIO= 1.133812

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7317   832.37
 P, BAR            197.88   114.27  0.23773
 T, K             3713.70  3517.88  1551.63
 RHO, KG/CU M    9.6811 0 5.9704 0 2.9717-2
 H, KJ/KG         -913.72 -1999.86 -10176.3
 U, KJ/KG        -2957.69 -3913.80 -10976.3
 G, KJ/KG        -60486.8 -58431.7 -35066.7
 S, KJ/(KG)(K)    16.0414  16.0414  16.0414

 M, (1/n)          15.107   15.282   16.127
 MW, MOL WT        15.107   15.282   16.127
 (dLV/dLP)t      -1.03210 -1.02717 -1.00001
 (dLV/dLT)p        1.5416   1.4846   1.0003
 Cp, KJ/(KG)(K)    8.5656   8.2078   2.8604
 GAMMAs            1.1371   1.1350   1.2200
 SON VEL,M/SEC     1524.6   1473.9    987.9
 MACH NUMBER        0.000    1.000    4.357

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2248.7   2248.7
 CF                         0.6554   1.9140
 Ivac, M/SEC                2772.4   4490.0
 Isp, M/SEC                 1473.9   4304.1

 MOLE FRACTIONS

 *H               0.02640  0.02236  0.00002
 HO2              0.00013  0.00008  0.00000
 *H2              0.15814  0.15065  0.11801
 H2O              0.73179  0.75775  0.88196
 H2O2             0.00004  0.00003  0.00000
 *O               0.00598  0.00449  0.00000
 *OH              0.06699  0.05597  0.00001
 *O2              0.01053  0.00868  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.25000  %FUEL= 12.121212  R,EQ.RATIO= 1.094715  PHI,EQ.RATIO= 1.094715

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7306   802.41
 P, BAR            197.88   114.34  0.24660
 T, K             3726.77  3533.62  1636.45
 RHO, KG/CU M    9.8627 0 6.0820 0 3.0141-2
 H, KJ/KG         -898.32 -1963.66 -10061.9
 U, KJ/KG        -2904.66 -3843.61 -10880.1
 G, KJ/KG        -59745.1 -57760.5 -35902.0
 S, KJ/(KG)(K)    15.7903  15.7903  15.7903

 M, (1/n)          15.444   15.628   16.630
 MW, MOL WT        15.444   15.628   16.630
 (dLV/dLP)t      -1.03434 -1.02966 -1.00002
 (dLV/dLT)p        1.5771   1.5264   1.0007
 Cp, KJ/(KG)(K)    8.6941   8.4134   2.8578
 GAMMAs            1.1359   1.1334   1.2124
 SON VEL,M/SEC     1509.7   1459.7    995.9
 MACH NUMBER        0.000    1.000    4.298

 PERFORMANCE PARAMETERS

 Ae/At                     1.00000   68.800
 CSTAR, M/SEC               2228.9   2228.9
 CF                         0.6549   1.9207
 Ivac, M/SEC                2747.6   4472.1
 Isp, M/SEC                 1459.7   4281.0

 MOLE FRACTIONS

 *H               0.02556  0.02170  0.00005
 HO2              0.00017  0.00011  0.00000
 *H2              0.14070  0.13240  0.08651
 H2O              0.73803  0.76491  0.91342
 H2O2             0.00005  0.00003  0.00000
 *O               0.00718  0.00557  0.00000
 *OH              0.07397  0.06292  0.00003
 *O2              0.01433  0.01236  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.50000  %FUEL= 11.764706  R,EQ.RATIO= 1.058224  PHI,EQ.RATIO= 1.058224

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7300   772.31
 P, BAR            197.88   114.38  0.25622
 T, K             3734.29  3542.88  1725.10
 RHO, KG/CU M    1.0049 1 6.1962 0 3.0606-2
 H, KJ/KG         -883.83 -1928.95 -9933.55
 U, KJ/KG        -2853.07 -3774.94 -10770.7
 G, KJ/KG        -58958.8 -57027.1 -36762.0
 S, KJ/(KG)(K)    15.5518  15.5518  15.5518

 M, (1/n)          15.767   15.958   17.133
 MW, MOL WT        15.767   15.958   17.133
 (dLV/dLP)t      -1.03583 -1.03136 -1.00005
 (dLV/dLT)p        1.6005   1.5547   1.0016
 Cp, KJ/(KG)(K)    8.7223   8.4972   2.8668
 GAMMAs            1.1351   1.1323   1.2045
 SON VEL,M/SEC     1495.1   1445.8   1004.2
 MACH NUMBER        0.000    1.000    4.237

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2208.9   2208.9
 CF                         0.6545   1.9260
 Ivac, M/SEC                2722.6   4451.1
 Isp, M/SEC                 1445.8   4254.3

 MOLE FRACTIONS

 *H               0.02447  0.02076  0.00009
 HO2              0.00021  0.00014  0.00000
 *H2              0.12519  0.11633  0.05502
 H2O              0.74238  0.76983  0.94480
 H2O2             0.00006  0.00004  0.00000
 *O               0.00839  0.00668  0.00000
 *OH              0.08036  0.06927  0.00009
 *O2              0.01893  0.01696  0.00000

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.75000  %FUEL= 11.428571  R,EQ.RATIO= 1.024088  PHI,EQ.RATIO= 1.024088

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7296   741.25
 P, BAR            197.88   114.41  0.26695
 T, K             3736.98  3546.53  1819.13
 RHO, KG/CU M    1.0238 1 6.3127 0 3.1123-2
 H, KJ/KG         -870.17 -1895.69 -9783.56
 U, KJ/KG        -2802.99 -3707.99 -10641.3
 G, KJ/KG        -58139.5 -56246.3 -37661.7
 S, KJ/(KG)(K)    15.3250  15.3250  15.3250

 M, (1/n)          16.076   16.271   17.634
 MW, MOL WT        16.076   16.271   17.634
 (dLV/dLP)t      -1.03654 -1.03219 -1.00016
 (dLV/dLT)p        1.6118   1.5686   1.0057
 Cp, KJ/(KG)(K)    8.6565   8.4612   2.9273
 GAMMAs            1.1347   1.1317   1.1944
 SON VEL,M/SEC     1480.9   1432.2   1012.2
 MACH NUMBER        0.000    1.000    4.171

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2188.7   2188.7
 CF                         0.6543   1.9290
 Ivac, M/SEC                2697.6   4425.3
 Isp, M/SEC                 1432.1   4222.2

 MOLE FRACTIONS

 *H               0.02322  0.01963  0.00013
 HO2              0.00026  0.00017  0.00000
 *H2              0.11150  0.10232  0.02371
 H2O              0.74505  0.77274  0.97573
 H2O2             0.00007  0.00004  0.00000
 *O               0.00957  0.00775  0.00000
 *OH              0.08602  0.07487  0.00041
 *O2              0.02432  0.02247  0.00003

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

              THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM

           COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    8.00000  %FUEL= 11.111111  R,EQ.RATIO= 0.992085  PHI,EQ.RATIO= 0.992085

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7295   724.92
 P, BAR            197.88   114.41  0.27297
 T, K             3735.56  3545.45  1867.79
 RHO, KG/CU M    1.0430 1 6.4310 0 3.1702-2
 H, KJ/KG         -857.26 -1863.82 -9607.65
 U, KJ/KG        -2754.51 -3642.94 -10468.7
 G, KJ/KG        -57298.3 -55432.5 -37828.4
 S, KJ/(KG)(K)    15.1091  15.1091  15.1091

 M, (1/n)          16.371   16.569   18.036
 MW, MOL WT        16.371   16.569   18.036
 (dLV/dLP)t      -1.03655 -1.03223 -1.00078
 (dLV/dLT)p        1.6123   1.5696   1.0265
 Cp, KJ/(KG)(K)    8.5137   8.3263   3.2227
 GAMMAs            1.1345   1.1315   1.1764
 SON VEL,M/SEC     1467.1   1418.8   1006.4
 MACH NUMBER        0.000    1.000    4.157

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2168.7   2168.7
 CF                         0.6543   1.9290
 Ivac, M/SEC                2672.8   4389.2
 Isp, M/SEC                 1418.8   4183.4

 MOLE FRACTIONS

 *H               0.02187  0.01838  0.00006
 HO2              0.00031  0.00021  0.00000
 *H2              0.09946  0.09019  0.00270
 H2O              0.74624  0.77392  0.99041
 H2O2             0.00008  0.00005  0.00000
 *O               0.01067  0.00876  0.00003
 *OH              0.09091  0.07964  0.00198
 *O2              0.03047  0.02886  0.00482

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS
mixture_ratios = np.arange(2, 8.1, 0.25)

with open('cea_OF_ratio_out.txt', 'r') as f:
    lines = f.readlines()

cstars = []
specific_impulses = []
specific_impulses_vac = []

for line in lines:
    # ignore blank lines
    if not line.strip():
        continue
    
    words = line.split()
    if words[0] == 'CSTAR,':
        cstars.append(float(words[3]))
    elif words[0] == 'Isp,':
        specific_impulses.append(float(words[3]))
    elif words[0] == 'Ivac,':
        specific_impulses_vac.append(float(words[3]))
cstars = Q_(np.array(cstars), 'm/s')
specific_impulses = Q_(np.array(specific_impulses), 'm/s') / g0
specific_impulses_vac = Q_(np.array(specific_impulses_vac), 'm/s') / g0

# just checking that things line up
assert len(mixture_ratios) == len(cstars)
assert len(mixture_ratios) == len(specific_impulses)
assert len(mixture_ratios) == len(specific_impulses_vac)
fig, axes = plt.subplots(3, 1)

axes[0].plot(mixture_ratios, to_si(cstars))
axes[0].set_ylabel('$c^*$ (m/s)')
axes[0].grid(True)

axes[1].plot(mixture_ratios, to_si(specific_impulses))
axes[1].set_ylabel('$I_{\mathrm{sp}}$ (s)')
axes[1].grid(True)

axes[2].plot(mixture_ratios, to_si(specific_impulses_vac))
axes[2].set_xlabel('O/F ratio')
axes[2].set_ylabel('$I_{\mathrm{vac}}$ (s)')
axes[2].grid(True)

plt.tight_layout()
plt.show()
../_images/thermochemistry_24_0.png

This allows us to determine the mixture ratio for optimal performance, although in practice something slightly off-optimal might be used for other reasons (e.g., combustion stability, reducing peak temperature).

Frozen vs. shifting equilibrium

We have already seen how assuming the mixture composition either remains frozen from the combustion chamber or follows a shifting equilibrium model leads to different calculations of performance. Frozen equilibrium underpredicts, while shifting equilibrium overpredicts. We can use these together to estimate the true actual performance as somewhere in between, such as 40% of the difference between the two results.

We already have results for shifting equilibrum, and can similarly extract the specific impulse for frozen equilibrium calculations saved in CEA_OF_ratio_frozen_out.txt:

# Click the + to see the full contents of the output file
filename = 'CEA_OF_ratio_frozen_out.txt'
print('Contents of ' + filename + ':')
with open(filename) as f:
    file_contents = f.read()
    print(file_contents)
Contents of CEA_OF_ratio_frozen_out.txt:


         NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004
                   BY  BONNIE MCBRIDE AND SANFORD GORDON
      REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

 *******************************************************************************

  
 ### CEA analysis performed on Tue 08-Feb-2022 17:38:43
  
 # Problem Type: "Rocket" (Infinite Area Combustor)
  
 prob case=_______________8942 ro frozen
  
 # Pressure (1 value):
 p,psia= 2870
 # Supersonic Area Ratio (1 value):
 supar= 68.8
  
 # Oxidizer/Fuel Wt. ratio (25 values):
 o/f= 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, 5, 5.25, 5.5, 5
 .75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8
  
 # You selected the following fuels and oxidizers:
 reac
 fuel H2(L)             wt%=100.0000
 oxid O2(L)             wt%=100.0000
  
 # You selected these options for output:
 # short version of output
 output short
 # Proportions of any products will be expressed as Mole Fractions.
 # Heat will be expressed as siunits
 output siunits
  
 # Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
 N/prepareInputFile.cgi
  
 ### IMPORTANT:  The following line is the end of your CEA input file!
 end

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.00000  %FUEL= 33.333333  R,EQ.RATIO= 3.968341  PHI,EQ.RATIO= 3.968341

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8302  1903.04
 P, BAR            197.88   108.12  0.10398
 T, K             1797.77  1570.06   256.50
 RHO, KG/CU M    8.0059 0 5.0087 0 2.9485-2
 H, KJ/KG        -1760.57 -3158.31 -10281.4
 U, KJ/KG        -4232.25 -5316.91 -10634.1
 G, KJ/KG        -50618.5 -45827.6 -17252.3
 S, KJ/(KG)(K)    27.1769  27.1769  27.1769

 M, (1/n)           6.048    6.048    6.048
 Cp, KJ/(KG)(K)    6.2372   6.0346   4.9115
 GAMMAs            1.2828   1.2950   1.3887
 SON VEL,M/SEC     1780.6   1672.0    699.8
 MACH NUMBER        0.000    1.000    5.899

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2362.9   2362.9
 CF                         0.7076   1.7471
 Ivac, M/SEC                2963.0   4213.6
 Isp, M/SEC                 1672.0   4128.2

 MOLE FRACTIONS

 *H              0.00002   *H2             0.74799   H2O             0.25199

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.25000  %FUEL= 30.769231  R,EQ.RATIO= 3.527415  PHI,EQ.RATIO= 3.527415

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8216  1819.86
 P, BAR            197.88   108.63  0.10873
 T, K             1975.45  1735.58   298.56
 RHO, KG/CU M    7.8927 0 4.9318 0 2.8696-2
 H, KJ/KG        -1656.35 -3067.06 -10459.2
 U, KJ/KG        -4163.45 -5269.74 -10838.1
 G, KJ/KG        -53103.6 -48267.3 -18234.7
 S, KJ/(KG)(K)    26.0433  26.0433  26.0433

 M, (1/n)           6.551    6.551    6.551
 Cp, KJ/(KG)(K)    5.9708   5.7872   4.6075
 GAMMAs            1.2699   1.2809   1.3802
 SON VEL,M/SEC     1784.3   1679.7    723.2
 MACH NUMBER        0.000    1.000    5.802

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2388.7   2388.7
 CF                         0.7032   1.7566
 Ivac, M/SEC                2991.1   4286.2
 Isp, M/SEC                 1679.7   4195.9

 MOLE FRACTIONS

 *H              0.00008   *H2             0.71644   H2O             0.28348

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.50000  %FUEL= 28.571429  R,EQ.RATIO= 3.174673  PHI,EQ.RATIO= 3.174673

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8141  1740.26
 P, BAR            197.88   109.08  0.11371
 T, K             2144.07  1893.51   342.93
 RHO, KG/CU M    7.8307 0 4.8879 0 2.8133-2
 H, KJ/KG        -1567.01 -2982.64 -10594.9
 U, KJ/KG        -4093.97 -5214.30 -10999.0
 G, KJ/KG        -55217.9 -50363.8 -19176.0
 S, KJ/(KG)(K)    25.0229  25.0229  25.0229

 M, (1/n)           7.055    7.055    7.055
 Cp, KJ/(KG)(K)    5.7303   5.5651   4.3324
 GAMMAs            1.2589   1.2687   1.3737
 SON VEL,M/SEC     1783.6   1682.6    745.1
 MACH NUMBER        0.000    1.000    5.703

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2405.9   2405.9
 CF                         0.6994   1.7661
 Ivac, M/SEC                3008.9   4344.3
 Isp, M/SEC                 1682.6   4249.2

 MOLE FRACTIONS

 *H              0.00024   *H2             0.68481   H2O             0.31494
 *OH             0.00002

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    2.75000  %FUEL= 26.666667  R,EQ.RATIO= 2.886066  PHI,EQ.RATIO= 2.886066

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8075  1664.05
 P, BAR            197.88   109.47  0.11891
 T, K             2304.06  2044.01   389.64
 RHO, KG/CU M    7.8060 0 4.8680 0 2.7739-2
 H, KJ/KG        -1489.58 -2904.19 -10693.9
 U, KJ/KG        -4024.54 -5153.03 -11122.6
 G, KJ/KG        -57021.2 -52168.0 -20085.0
 S, KJ/(KG)(K)    24.1016  24.1016  24.1016

 M, (1/n)           7.557    7.557    7.557
 Cp, KJ/(KG)(K)    5.5118   5.3633   4.0892
 GAMMAs            1.2494   1.2581   1.3681
 SON VEL,M/SEC     1779.7   1682.0    765.8
 MACH NUMBER        0.000    1.000    5.603

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2416.6   2416.6
 CF                         0.6960   1.7754
 Ivac, M/SEC                3019.0   4390.5
 Isp, M/SEC                 1682.0   4290.5

 MOLE FRACTIONS

 *H              0.00057   *H2             0.65305   H2O             0.34633
 *OH             0.00005

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.00000  %FUEL= 25.000000  R,EQ.RATIO= 2.645561  PHI,EQ.RATIO= 2.645561

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.8018  1591.73
 P, BAR            197.88   109.82  0.12432
 T, K             2455.55  2187.03   438.50
 RHO, KG/CU M    7.8101 0 4.8668 0 2.7477-2
 H, KJ/KG        -1421.83 -2830.82 -10760.3
 U, KJ/KG        -3955.47 -5087.40 -11212.7
 G, KJ/KG        -58554.6 -53716.1 -20962.7
 S, KJ/(KG)(K)    23.2668  23.2668  23.2668

 M, (1/n)           8.058    8.058    8.058
 Cp, KJ/(KG)(K)    5.3122   5.1785   3.8778
 GAMMAs            1.2411   1.2488   1.3625
 SON VEL,M/SEC     1773.2   1678.7    785.2
 MACH NUMBER        0.000    1.000    5.504

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2422.1   2422.1
 CF                         0.6931   1.7843
 Ivac, M/SEC                3022.9   4426.4
 Isp, M/SEC                 1678.7   4321.7

 MOLE FRACTIONS

 *H              0.00116   *H2             0.62110   H2O             0.37759
 *OH             0.00015

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.25000  %FUEL= 23.529412  R,EQ.RATIO= 2.442056  PHI,EQ.RATIO= 2.442056

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7968  1523.98
 P, BAR            197.88   110.13  0.12984
 T, K             2598.47  2322.40   489.08
 RHO, KG/CU M    7.8373 0 4.8803 0 2.7323-2
 H, KJ/KG        -1362.05 -2761.89 -10796.8
 U, KJ/KG        -3886.90 -5018.48 -11272.0
 G, KJ/KG        -59847.0 -55033.2 -21804.6
 S, KJ/(KG)(K)    22.5075  22.5075  22.5075

 M, (1/n)           8.557    8.557    8.557
 Cp, KJ/(KG)(K)    5.1291   5.0085   3.6960
 GAMMAs            1.2337   1.2407   1.3567
 SON VEL,M/SEC     1764.9   1673.2    802.9
 MACH NUMBER        0.000    1.000    5.410

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2423.3   2423.3
 CF                         0.6905   1.7926
 Ivac, M/SEC                3021.9   4453.3
 Isp, M/SEC                 1673.2   4343.9

 MOLE FRACTIONS

 *H              0.00208   *H2             0.58893   H2O             0.40862
 *OH             0.00037

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.50000  %FUEL= 22.222222  R,EQ.RATIO= 2.267624  PHI,EQ.RATIO= 2.267624

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7924  1461.43
 P, BAR            197.88   110.40  0.13540
 T, K             2732.68  2449.88   540.79
 RHO, KG/CU M    7.8839 0 4.9062 0 2.7260-2
 H, KJ/KG        -1308.92 -2696.73 -10805.9
 U, KJ/KG        -3818.84 -4946.91 -11302.6
 G, KJ/KG        -60920.0 -56138.8 -22602.8
 S, KJ/(KG)(K)    21.8141  21.8141  21.8141

 M, (1/n)           9.052    9.052    9.052
 Cp, KJ/(KG)(K)    4.9605   4.8511   3.5406
 GAMMAs            1.2272   1.2336   1.3503
 SON VEL,M/SEC     1755.1   1666.0    819.0
 MACH NUMBER        0.000    1.000    5.322

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2420.9   2420.9
 CF                         0.6882   1.8002
 Ivac, M/SEC                3016.7   4472.2
 Isp, M/SEC                 1666.0   4358.2

 MOLE FRACTIONS

 *H              0.00341   *H2             0.55653   H2O             0.43928
 *OH             0.00078

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    3.75000  %FUEL= 21.052632  R,EQ.RATIO= 2.116449  PHI,EQ.RATIO= 2.116449

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7885  1404.32
 P, BAR            197.88   110.64  0.14091
 T, K             2858.04  2569.27   592.97
 RHO, KG/CU M    7.9470 0 4.9427 0 2.7276-2
 H, KJ/KG        -1261.38 -2634.87 -10789.9
 U, KJ/KG        -3751.35 -4873.26 -11306.5
 G, KJ/KG        -61790.9 -57048.5 -23348.2
 S, KJ/(KG)(K)    21.1787  21.1787  21.1787

 M, (1/n)           9.544    9.544    9.544
 Cp, KJ/(KG)(K)    4.8046   4.7050   3.4078
 GAMMAs            1.2215   1.2272   1.3435
 SON VEL,M/SEC     1744.0   1657.4    833.1
 MACH NUMBER        0.000    1.000    5.240

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2415.5   2415.5
 CF                         0.6862   1.8073
 Ivac, M/SEC                3007.9   4483.8
 Isp, M/SEC                 1657.4   4365.4

 MOLE FRACTIONS

 *H              0.00515   *H2             0.52394   H2O             0.46942
 *O              0.00001   *OH             0.00149

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.00000  %FUEL= 20.000000  R,EQ.RATIO= 1.984171  PHI,EQ.RATIO= 1.984171

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7851  1352.84
 P, BAR            197.88   110.85  0.14627
 T, K             2974.45  2680.39   644.88
 RHO, KG/CU M    8.0246 0 4.9884 0 2.7359-2
 H, KJ/KG        -1218.59 -2575.92 -10751.4
 U, KJ/KG        -3684.49 -4798.03 -11286.0
 G, KJ/KG        -62475.3 -57776.8 -24032.2
 S, KJ/(KG)(K)    20.5943  20.5943  20.5943

 M, (1/n)          10.029   10.029   10.029
 Cp, KJ/(KG)(K)    4.6600   4.5690   3.2938
 GAMMAs            1.2164   1.2217   1.3363
 SON VEL,M/SEC     1731.9   1647.6    845.2
 MACH NUMBER        0.000    1.000    5.166

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2407.6   2407.6
 CF                         0.6844   1.8136
 Ivac, M/SEC                2996.3   4488.9
 Isp, M/SEC                 1647.6   4366.4

 MOLE FRACTIONS

 *H              0.00728   *H2             0.49125   H2O             0.49883
 *O              0.00002   *OH             0.00261   *O2             0.00001

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.25000  %FUEL= 19.047619  R,EQ.RATIO= 1.867455  PHI,EQ.RATIO= 1.867455

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7821  1306.86
 P, BAR            197.88   111.04  0.15142
 T, K             3081.92  2783.21   695.81
 RHO, KG/CU M    8.1149 0 5.0423 0 2.7503-2
 H, KJ/KG        -1179.87 -2519.58 -10692.9
 U, KJ/KG        -3618.34 -4721.70 -11243.5
 G, KJ/KG        -62988.0 -58337.0 -24647.5
 S, KJ/(KG)(K)    20.0550  20.0550  20.0550

 M, (1/n)          10.509   10.509   10.509
 Cp, KJ/(KG)(K)    4.5256   4.4419   3.1954
 GAMMAs            1.2119   1.2167   1.3291
 SON VEL,M/SEC     1719.0   1636.9    855.4
 MACH NUMBER        0.000    1.000    5.099

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2397.5   2397.5
 CF                         0.6828   1.8194
 Ivac, M/SEC                2982.2   4488.1
 Isp, M/SEC                 1636.9   4361.9

 MOLE FRACTIONS

 *H              0.00973   *H2             0.45860   H2O             0.52733
 *O              0.00005   *OH             0.00427   *O2             0.00002

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.50000  %FUEL= 18.181818  R,EQ.RATIO= 1.763707  PHI,EQ.RATIO= 1.763707

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7794  1266.10
 P, BAR            197.88   111.20  0.15629
 T, K             3180.53  2877.75   745.14
 RHO, KG/CU M    8.2164 0 5.1033 0 2.7700-2
 H, KJ/KG        -1144.68 -2465.62 -10616.9
 U, KJ/KG        -3553.02 -4644.68 -11181.1
 G, KJ/KG        -63342.7 -58742.4 -25188.7
 S, KJ/(KG)(K)    19.5559  19.5559  19.5559

 M, (1/n)          10.980   10.980   10.980
 Cp, KJ/(KG)(K)    4.4002   4.3228   3.1095
 GAMMAs            1.2079   1.2124   1.3219
 SON VEL,M/SEC     1705.6   1625.4    863.6
 MACH NUMBER        0.000    1.000    5.040

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2385.6   2385.6
 CF                         0.6813   1.8245
 Ivac, M/SEC                2966.0   4482.1
 Isp, M/SEC                 1625.4   4352.5

 MOLE FRACTIONS

 *H              0.01239   *H2             0.42615   H2O             0.55472
 *O              0.00011   *OH             0.00658   *O2             0.00005

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    4.75000  %FUEL= 17.391304  R,EQ.RATIO= 1.670881  PHI,EQ.RATIO= 1.670881

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7771  1230.20
 P, BAR            197.88   111.35  0.16085
 T, K             3270.40  2964.08   792.29
 RHO, KG/CU M    8.3280 0 5.1707 0 2.7944-2
 H, KJ/KG        -1112.55 -2413.86 -10525.7
 U, KJ/KG        -3488.62 -4567.37 -11101.3
 G, KJ/KG        -63552.4 -59005.2 -25652.3
 S, KJ/(KG)(K)    19.0924  19.0924  19.0924

 M, (1/n)          11.444   11.444   11.444
 Cp, KJ/(KG)(K)    4.2830   4.2111   3.0338
 GAMMAs            1.2043   1.2085   1.3149
 SON VEL,M/SEC     1691.6   1613.2    870.0
 MACH NUMBER        0.000    1.000    4.987

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2372.2   2372.2
 CF                         0.6801   1.8291
 Ivac, M/SEC                2948.1   4471.6
 Isp, M/SEC                 1613.3   4338.9

 MOLE FRACTIONS

 *H              0.01513   *H2             0.39411   H2O             0.58080
 *O              0.00020   *OH             0.00964   *O2             0.00012

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.00000  %FUEL= 16.666667  R,EQ.RATIO= 1.587337  PHI,EQ.RATIO= 1.587337

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7749  1198.77
 P, BAR            197.88   111.49  0.16507
 T, K             3351.71  3042.34   836.77
 RHO, KG/CU M    8.4487 0 5.2440 0 2.8230-2
 H, KJ/KG        -1083.09 -2364.06 -10421.4
 U, KJ/KG        -3425.22 -4490.01 -11006.1
 G, KJ/KG        -63628.9 -59136.8 -26036.3
 S, KJ/(KG)(K)    18.6609  18.6609  18.6609

 M, (1/n)          11.899   11.899   11.899
 Cp, KJ/(KG)(K)    4.1732   4.1061   2.9662
 GAMMAs            1.2011   1.2051   1.3082
 SON VEL,M/SEC     1677.3   1600.6    874.6
 MACH NUMBER        0.000    1.000    4.941

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2357.5   2357.5
 CF                         0.6789   1.8332
 Ivac, M/SEC                2928.8   4457.0
 Isp, M/SEC                 1600.6   4321.6

 MOLE FRACTIONS

 *H              0.01783   *H2             0.36268   H2O             0.60538
 *O              0.00036   *OH             0.01351   *O2             0.00023

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.25000  %FUEL= 16.000000  R,EQ.RATIO= 1.511749  PHI,EQ.RATIO= 1.511749

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7731  1171.41
 P, BAR            197.88   111.60  0.16892
 T, K             3424.61  3112.63   878.18
 RHO, KG/CU M    8.5778 0 5.3227 0 2.8556-2
 H, KJ/KG        -1055.99 -2316.21 -10306.0
 U, KJ/KG        -3362.87 -4412.94 -10897.5
 G, KJ/KG        -63582.5 -59146.7 -26339.8
 S, KJ/(KG)(K)    18.2580  18.2580  18.2580

 M, (1/n)          12.343   12.343   12.343
 Cp, KJ/(KG)(K)    4.0701   4.0071   2.9050
 GAMMAs            1.1983   1.2021   1.3019
 SON VEL,M/SEC     1662.6   1587.6    877.6
 MACH NUMBER        0.000    1.000    4.901

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2341.7   2341.7
 CF                         0.6780   1.8368
 Ivac, M/SEC                2908.3   4438.7
 Isp, M/SEC                 1587.6   4301.2

 MOLE FRACTIONS

 *H              0.02035   HO2             0.00001   *H2             0.33208
 H2O             0.62830   H2O2            0.00001   *O              0.00061
 *OH             0.01822   *O2             0.00044

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.50000  %FUEL= 15.384615  R,EQ.RATIO= 1.443033  PHI,EQ.RATIO= 1.443033

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7715  1147.76
 P, BAR            197.88   111.70  0.17240
 T, K             3489.25  3175.08   916.16
 RHO, KG/CU M    8.7147 0 5.4063 0 2.8918-2
 H, KJ/KG        -1030.98 -2270.11 -10181.0
 U, KJ/KG        -3301.62 -4336.31 -10777.2
 G, KJ/KG        -63422.3 -59043.8 -26562.8
 S, KJ/(KG)(K)    17.8810  17.8810  17.8810

 M, (1/n)          12.777   12.777   12.777
 Cp, KJ/(KG)(K)    3.9731   3.9137   2.8488
 GAMMAs            1.1959   1.1994   1.2961
 SON VEL,M/SEC     1647.8   1574.3    879.0
 MACH NUMBER        0.000    1.000    4.867

 PERFORMANCE PARAMETERS

 Ae/At                     1.00000   68.800
 CSTAR, M/SEC               2325.0   2325.0
 CF                         0.6771   1.8399
 Ivac, M/SEC                2886.7   4417.2
 Isp, M/SEC                 1574.3   4277.8

 MOLE FRACTIONS

 *H              0.02257   HO2             0.00001   *H2             0.30253
 H2O             0.64939   H2O2            0.00001   *O              0.00096
 *OH             0.02374   *O2             0.00079

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    5.75000  %FUEL= 14.814815  R,EQ.RATIO= 1.380293  PHI,EQ.RATIO= 1.380293

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7700  1127.47
 P, BAR            197.88   111.79  0.17551
 T, K             3545.79  3229.81   950.44
 RHO, KG/CU M    8.8590 0 5.4946 0 2.9314-2
 H, KJ/KG        -1007.82 -2225.66 -10047.7
 U, KJ/KG        -3241.46 -4260.26 -10646.5
 G, KJ/KG        -63155.9 -58835.5 -26706.3
 S, KJ/(KG)(K)    17.5273  17.5273  17.5273

 M, (1/n)          13.199   13.199   13.199
 Cp, KJ/(KG)(K)    3.8815   3.8253   2.7964
 GAMMAs            1.1937   1.1971   1.2908
 SON VEL,M/SEC     1632.9   1560.7    879.1
 MACH NUMBER        0.000    1.000    4.837

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2307.5   2307.5
 CF                         0.6763   1.8427
 Ivac, M/SEC                2864.3   4392.8
 Isp, M/SEC                 1560.7   4252.0

 MOLE FRACTIONS

 *H              0.02439   HO2             0.00002   *H2             0.27425
 H2O             0.66851   H2O2            0.00001   *O              0.00144
 *OH             0.03002   *O2             0.00135

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.00000  %FUEL= 14.285714  R,EQ.RATIO= 1.322780  PHI,EQ.RATIO= 1.322780

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7688  1110.26
 P, BAR            197.88   111.87  0.17823
 T, K             3594.37  3276.93   980.79
 RHO, KG/CU M    9.0105 0 5.5875 0 2.9742-2
 H, KJ/KG         -986.31 -2182.76 -9907.46
 U, KJ/KG        -3182.40 -4184.90 -10506.7
 G, KJ/KG        -62790.6 -58528.7 -26771.8
 S, KJ/(KG)(K)    17.1948  17.1948  17.1948

 M, (1/n)          13.608   13.608   13.608
 Cp, KJ/(KG)(K)    3.7951   3.7416   2.7469
 GAMMAs            1.1919   1.1952   1.2861
 SON VEL,M/SEC     1617.9   1546.9    877.9
 MACH NUMBER        0.000    1.000    4.812

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2289.4   2289.4
 CF                         0.6757   1.8450
 Ivac, M/SEC                2841.2   4365.9
 Isp, M/SEC                 1546.9   4224.0

 MOLE FRACTIONS

 *H              0.02575   HO2             0.00003   *H2             0.24744
 H2O             0.68555   H2O2            0.00002   *O              0.00207
 *OH             0.03694   *O2             0.00220

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.25000  %FUEL= 13.793103  R,EQ.RATIO= 1.269869  PHI,EQ.RATIO= 1.269869

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7678  1095.83
 P, BAR            197.88   111.94  0.18057
 T, K             3635.16  3316.59  1007.06
 RHO, KG/CU M    9.1688 0 5.6847 0 3.0202-2
 H, KJ/KG         -966.28 -2141.30 -9761.22
 U, KJ/KG        -3124.47 -4110.35 -10359.1
 G, KJ/KG        -62333.1 -58130.2 -26761.9
 S, KJ/(KG)(K)    16.8815  16.8815  16.8815

 M, (1/n)          14.005   14.005   14.005
 Cp, KJ/(KG)(K)    3.7133   3.6622   2.6992
 GAMMAs            1.1903   1.1935   1.2820
 SON VEL,M/SEC     1602.8   1533.0    875.5
 MACH NUMBER        0.000    1.000    4.791

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2270.7   2270.7
 CF                         0.6751   1.8471
 Ivac, M/SEC                2817.4   4336.6
 Isp, M/SEC                 1533.0   4194.0

 MOLE FRACTIONS

 *H              0.02662   HO2             0.00005   *H2             0.22229
 H2O             0.70042   H2O2            0.00002   *O              0.00285
 *OH             0.04431   *O2             0.00343

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.50000  %FUEL= 13.333333  R,EQ.RATIO= 1.221028  PHI,EQ.RATIO= 1.221028

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7669  1083.93
 P, BAR            197.88   111.99  0.18256
 T, K             3668.40  3349.01  1029.20
 RHO, KG/CU M    9.3336 0 5.7861 0 3.0692-2
 H, KJ/KG         -947.59 -2101.22 -9610.08
 U, KJ/KG        -3067.67 -4036.71 -10204.9
 G, KJ/KG        -61791.0 -57647.2 -26680.2
 S, KJ/(KG)(K)    16.5858  16.5858  16.5858

 M, (1/n)          14.387   14.387   14.387
 Cp, KJ/(KG)(K)    3.6358   3.5867   2.6528
 GAMMAs            1.1890   1.1921   1.2785
 SON VEL,M/SEC     1587.7   1519.0    872.1
 MACH NUMBER        0.000    1.000    4.773

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2251.5   2251.5
 CF                         0.6747   1.8487
 Ivac, M/SEC                2793.2   4305.2
 Isp, M/SEC                 1519.0   4162.3

 MOLE FRACTIONS

 *H              0.02699   HO2             0.00007   *H2             0.19896
 H2O             0.71307   H2O2            0.00003   *O              0.00378
 *OH             0.05193   *O2             0.00516

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    6.75000  %FUEL= 12.903226  R,EQ.RATIO= 1.175805  PHI,EQ.RATIO= 1.175805

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7662  1074.33
 P, BAR            197.88   112.03  0.18419
 T, K             3694.44  3374.49  1047.24
 RHO, KG/CU M    9.5045 0 5.8915 0 3.1210-2
 H, KJ/KG         -930.11 -2062.48 -9455.13
 U, KJ/KG        -3012.05 -3964.12 -10045.3
 G, KJ/KG        -61172.3 -57087.6 -26531.7
 S, KJ/(KG)(K)    16.3062  16.3062  16.3062

 M, (1/n)          14.754   14.754   14.754
 Cp, KJ/(KG)(K)    3.5623   3.5150   2.6077
 GAMMAs            1.1879   1.1909   1.2757
 SON VEL,M/SEC     1572.6   1504.9    867.7
 MACH NUMBER        0.000    1.000    4.759

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2231.9   2231.9
 CF                         0.6743   1.8501
 Ivac, M/SEC                2768.5   4272.1
 Isp, M/SEC                 1504.9   4129.2

 MOLE FRACTIONS

 *H              0.02690   HO2             0.00010   *H2             0.17756
 H2O             0.72351   H2O2            0.00004   *O              0.00483
 *OH             0.05957   *O2             0.00750

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.00000  %FUEL= 12.500000  R,EQ.RATIO= 1.133812  PHI,EQ.RATIO= 1.133812

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7657  1066.79
 P, BAR            197.88   112.07  0.18549
 T, K             3713.70  3393.46  1061.33
 RHO, KG/CU M    9.6811 0 6.0004 0 3.1754-2
 H, KJ/KG         -913.72 -2025.03 -9297.52
 U, KJ/KG        -2957.69 -3892.75 -9881.67
 G, KJ/KG        -60486.8 -56461.0 -26322.8
 S, KJ/(KG)(K)    16.0414  16.0414  16.0414

 M, (1/n)          15.107   15.107   15.107
 Cp, KJ/(KG)(K)    3.4925   3.4467   2.5637
 GAMMAs            1.1871   1.1900   1.2734
 SON VEL,M/SEC     1557.7   1490.8    862.5
 MACH NUMBER        0.000    1.000    4.748

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2212.0   2212.0
 CF                         0.6740   1.8512
 Ivac, M/SEC                2743.6   4237.5
 Isp, M/SEC                 1490.8   4094.8

 MOLE FRACTIONS

 *H              0.02640   HO2             0.00013   *H2             0.15814
 H2O             0.73179   H2O2            0.00004   *O              0.00598
 *OH             0.06699   *O2             0.01053

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.25000  %FUEL= 12.121212  R,EQ.RATIO= 1.094715  PHI,EQ.RATIO= 1.094715

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7652  1061.07
 P, BAR            197.88   112.10  0.18649
 T, K             3726.77  3406.45  1071.72
 RHO, KG/CU M    9.8627 0 6.1125 0 3.2322-2
 H, KJ/KG         -898.32 -1988.88 -9138.45
 U, KJ/KG        -2904.66 -3822.77 -9715.42
 G, KJ/KG        -59745.1 -55777.7 -26061.2
 S, KJ/(KG)(K)    15.7903  15.7903  15.7903

 M, (1/n)          15.444   15.444   15.444
 Cp, KJ/(KG)(K)    3.4262   3.3818   2.5206
 GAMMAs            1.1864   1.1893   1.2716
 SON VEL,M/SEC     1542.8   1476.9    856.5
 MACH NUMBER        0.000    1.000    4.739

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2192.0   2192.0
 CF                         0.6738   1.8520
 Ivac, M/SEC                2718.6   4201.7
 Isp, M/SEC                 1476.9   4059.6

 MOLE FRACTIONS

 *H              0.02556   HO2             0.00017   *H2             0.14070
 H2O             0.73803   H2O2            0.00005   *O              0.00718
 *OH             0.07397   *O2             0.01433

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.50000  %FUEL= 11.764706  R,EQ.RATIO= 1.058224  PHI,EQ.RATIO= 1.058224

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7649  1056.95
 P, BAR            197.88   112.12  0.18722
 T, K             3734.29  3414.08  1078.73
 RHO, KG/CU M    1.0049 1 6.2274 0 3.2911-2
 H, KJ/KG         -883.83 -1954.01 -8979.12
 U, KJ/KG        -2853.07 -3754.38 -9547.97
 G, KJ/KG        -58958.8 -55049.1 -25755.2
 S, KJ/(KG)(K)    15.5518  15.5518  15.5518

 M, (1/n)          15.767   15.767   15.767
 Cp, KJ/(KG)(K)    3.3632   3.3199   2.4785
 GAMMAs            1.1860   1.1888   1.2703
 SON VEL,M/SEC     1528.2   1463.0    850.1
 MACH NUMBER        0.000    1.000    4.734

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2172.0   2172.0
 CF                         0.6736   1.8526
 Ivac, M/SEC                2693.6   4165.1
 Isp, M/SEC                 1463.0   4023.8

 MOLE FRACTIONS

 *H              0.02447   HO2             0.00021   *H2             0.12519
 H2O             0.74238   H2O2            0.00006   *O              0.00839
 *OH             0.08036   *O2             0.01893

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    7.75000  %FUEL= 11.428571  R,EQ.RATIO= 1.024088  PHI,EQ.RATIO= 1.024088

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7647  1054.20
 P, BAR            197.88   112.13  0.18771
 T, K             3736.98  3417.04  1082.75
 RHO, KG/CU M    1.0238 1 6.3445 0 3.3518-2
 H, KJ/KG         -870.17 -1920.42 -8820.66
 U, KJ/KG        -2802.99 -3687.77 -9380.68
 G, KJ/KG        -58139.5 -54286.6 -25413.9
 S, KJ/(KG)(K)    15.3250  15.3250  15.3250

 M, (1/n)          16.076   16.076   16.076
 Cp, KJ/(KG)(K)    3.3033   3.2609   2.4374
 GAMMAs            1.1856   1.1885   1.2694
 SON VEL,M/SEC     1513.8   1449.3    843.1
 MACH NUMBER        0.000    1.000    4.730

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2152.0   2152.0
 CF                         0.6735   1.8530
 Ivac, M/SEC                2668.7   4128.0
 Isp, M/SEC                 1449.3   3987.6

 MOLE FRACTIONS

 *H              0.02322   HO2             0.00026   *H2             0.11150
 H2O             0.74505   H2O2            0.00007   *O              0.00957
 *OH             0.08602   *O2             0.02432

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

           THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION

 Pin =  2870.0 PSIA
 CASE = _______________

             REACTANT                    WT FRACTION      ENERGY      TEMP
                                          (SEE NOTE)     KJ/KG-MOL      K  
 FUEL        H2(L)                        1.0000000     -9012.000     20.270
 OXIDANT     O2(L)                        1.0000000    -12979.000     90.170

 O/F=    8.00000  %FUEL= 11.111111  R,EQ.RATIO= 0.992085  PHI,EQ.RATIO= 0.992085

                 CHAMBER   THROAT     EXIT
 Pinf/P            1.0000   1.7646  1052.61
 P, BAR            197.88   112.14  0.18799
 T, K             3735.56  3416.02  1084.22
 RHO, KG/CU M    1.0430 1 6.4633 0 3.4139-2
 H, KJ/KG         -857.26 -1888.11 -8664.11
 U, KJ/KG        -2754.51 -3623.07 -9214.78
 G, KJ/KG        -57298.3 -53501.2 -25045.7
 S, KJ/(KG)(K)    15.1091  15.1091  15.1091

 M, (1/n)          16.371   16.371   16.371
 Cp, KJ/(KG)(K)    3.2463   3.2048   2.3974
 GAMMAs            1.1855   1.1883   1.2688
 SON VEL,M/SEC     1499.7   1435.9    835.9
 MACH NUMBER        0.000    1.000    4.727

 PERFORMANCE PARAMETERS

 Ae/At                      1.0000   68.800
 CSTAR, M/SEC               2132.2   2132.2
 CF                         0.6734   1.8532
 Ivac, M/SEC                2644.2   4090.8
 Isp, M/SEC                 1435.9   3951.4

 MOLE FRACTIONS

 *H              0.02187   HO2             0.00031   *H2             0.09946
 H2O             0.74624   H2O2            0.00008   *O              0.01067
 *OH             0.09091   *O2             0.03047

  * THERMODYNAMIC PROPERTIES FITTED TO 20000.K

 NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS
with open('CEA_OF_ratio_frozen_out.txt', 'r') as f:
    lines = f.readlines()

specific_impulses_frozen = []

for line in lines:
    # ignore blank lines
    if not line.strip():
        continue
    
    words = line.split()
    if words[0] == 'Isp,':
        specific_impulses_frozen.append(float(words[3]))
specific_impulses_frozen = Q_(np.array(specific_impulses_frozen), 'm/s') / g0

# just checking that things line up
assert len(mixture_ratios) == len(specific_impulses_frozen)
specific_impulses_act = specific_impulses_frozen + 0.4*(specific_impulses - specific_impulses_frozen)

plt.plot(mixture_ratios, to_si(specific_impulses), label='Shifting equilibrium')
plt.plot(mixture_ratios, to_si(specific_impulses_frozen), label='Frozen')
plt.plot(mixture_ratios, to_si(specific_impulses_act), '--', label='Actual')
plt.ylabel('$I_{\mathrm{sp}}$ (s)')
plt.xlabel('Mixture ratio')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()
../_images/thermochemistry_29_0.png